

Is it done yet? Comparison of Methods to Monitor Degree of UV Cure

Noah Menard* - Veritas Testing and Consulting LLC Kevin Menard, PhD - Mary Kay Corporation Ben Menard – Hitachi High-Tech Analytical Science

*Contact email: noah@veritaslab.com

Agenda

- Properties and Degree of Cure
- Differences in Results
- Methods
 - FTIR
 - DSC
 - Rheological (DMA and Rheometer)
 - TMA
- Summary

Properties versus Degree of Cure

Polymer chains need to reach a certain value to have what we could call "plastic" properties.

How fast the high molecular weight species appear is mechanism dependent.

The "dog-leg" curves applies to most if not all polymer properties.

Methods give different results

- FTIR, NIR, or Raman measure chemical presence.
- DSC measure energy released and heat capacity changes.
- DMA and Rheology measure modulus and viscosity.
- Depending on the mechanism of polymerization, high molecular weight appears at different degrees of cure.
- "Gelation" and "vitrification" are easier to detect in some methods than others.
- Sample thickness is of interest and how it may affect the above.

Even just measuring the Tg varies

Because Tg is not a temperature, but a region of behavior.

And the less symmetric or wider the Tg is, the worst the agreement is.

 T_{f}

 $\Delta H/(J/g)$

 ΔCp

Classic Work by Stansbury's group: UV-NIR-DMA system

- Overlay of uncured and fully cured nail polish* showing peaks that change over time.
- Peaks at 1639 and 812 cm⁻¹ are only present in uncured and partially samples.
- Other peaks are only present in the cured samples.
- The peaks are used to determine degree of chemical cure.

* Samples were an OTC UV curing nail polish used as an example

FTIR -2

- Select peaks vanish over time.
- In a time-based software, we can track the disappearance of a peak.
- The Diamond ATR is simple covered and cured in place.
- Samples can be removed from the ATR as a disc and checked against DSC methods.

©2022 Veritas Testing and Consulting

FTIR-3

- Difficulties:
 - Small/weak peaks.
 - Highly complex materials with peak masking.
- Often need to consider other techniques?

 $\ensuremath{\mathbb{C}2022}$ Veritas Testing and Consulting

DSC - Differential Scanning Calorimeter

- DSC measures the heat flow associated with a transition.
- For curing, two approaches
 - Changes in the enthalpy of the reaction on heating.
 - Changes in the glass transition temperature on the second heat.
- Environmental isolation and control.

DSC Method 1 - Δ H Changes

Allows control at various temperatures and to measure enthalpy if a thermal component is required post-UV.

Method 2 - Tg

- Requires a temperature scan following the UV cure scan.
- On production sample, a small area of material or flashing is sacrificed.
- As heating is often 20°C/min, runs are short. Higher speeds may increase sensitivity.
- Very high degree of cure may be undetectable.

TMA – Thermomechanical Analysis

- Measures size changes in materials.
- At Tg, the rate of expansion changes.
- The intersection of the baselines gives the Tg temperature.
- A slower method but allows measure of CTE and shrinkage.

Tracking dimensional changes

Rheological approaches – DMA and Rheometer

- Despite modern terminology these operate on the same principles.
- An oscillatory stress is applied to the sample at a set frequency.
- Multiple frequencies can be used to match applications.
- Difference is sample form geometry.
- DMA refers instruments for solid or supported samples.
- Rheology for liquid samples.
- Possibility of lifetime estimation via Time-Temperature Superposition.
- Can give an idea of molecular weight and molecular weight distribution.
- Stress-strain curves and creep/recovery.

Storage Modulus (E' or G'): Elastic response Loss Modulus (E'' or G''): Viscous response, dissipation Tan Delta: Damping, ratio of E''/E' or G''/G'

DMA- Dynamic Mechanic Analyzer

©2022 Veritas Testing and Consulting

Rheology - Parallel Plate

- Single frequency scan at 1 hertz.
- Frequency can vary or multiple frequencies applied.
- Sample irradiated from bottom via a quartz lower plate with Peltier temperature control and hood.
- Crossover of G' and G" estimates gelation.
- Leveling off of the G' estimates vitrification.

©2022 Veritas Testing and Consulting

Viscosity

- Viscosity (eta*) calculated from data set.
- Does not exactly match other methods.
- If performed in a rheometer, early stages may require different plate sizes.

©2022 Veritas Testing and Consulting

Summary

Method	Measures	Reports	Get degree of cure from		Pros		Cons
FTIR	Absorbance of key peaks	Peak height and cm-1	Formation/ disappearance of peaks or ratios	•	Rapid Inexpensive	•	Not as sensitive, may be distorted depending on if similar bonds are naturally present. No physical or thermal info.
DSC	Shift in baseline	Tg	Temperature, Delta cp	•	Relatively fast, High temperature accuracy	•	Have to know specific temperatures to compare to for DSC. One result per run. No mechanical data.
	Energy changes	Delta H	Resulting peak/lack thereof	•	Relatively fast, high accuracy	•	Need comparative values. No mechanical info.
ТМА	Change in position	Tg	Temperature	•	Thin coating in situ Shrinkage* (different experiment)	•	Slow. Only temp.
DMA/Rheometer	Stiffness	Modulus	Modulus value, Tg location	Effective mechanical cure	•	Slow. Requires skilled tech.	
	Damping	Tan Delta	Peak location				
Rheology	Viscosity	Viscosity	Viscosity increase	•	Applies to real world	•	Can be slow. Requires skilled tech.

Finally...

Thank you to

- Mary Kay Corp
- Hitachi High-Tech Analytical
- You for listening

Equipment used

- PerkinElmer DSC8500
- Perkin Elmer Spectrum 2
- Mettler Toledo TMA 2+
- Hitachi DMA7100
- Anton Parr MCR302 Rheometer
- Omnicure S2000